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Euclidean time formulation of the eigenvalue moment method: 
a moment problem-convexity analysis of Barnsley's theorem 

C R Handy and G L Ndow 
Department of Physics and Center for Theoretical Srudier of Physical Systems, Clark 
Atlanta University, Atlanta, Georgia 30314, USA 

Received 1 October 1991 

Abstract. Over the last few years, the eigenvalue moment method (EMM) has been shown 
to be very effective in generating converging lower and upper bounds to the discrete 
low-lying spectrum of singular multidimensional Hamiltonians. In this work we adapt the 
EMM approach to the Euclidean time-dependent Schredinger equation. The result is a new 
E M M  theory which significantly overlaps with other eigenenergy bounding theories and 
rvhirh !ea?s !e a mere rigero9s a!geri!b-ic fcm~!at!cs !has prerinus!y wzi!ab!e. 

1. Introduction 

The eigenvalue moment method (EMM) is a non-perturbative theory for generating 
converging lower and upper bounds to the low-lying energy eigenvalues of quantum 
Hamiltonians. It has been particularly successful in the analysis of singular problems 
for which standard methods, such as large-order perturbation theory, are ineffective 
(Handy and Bessis 1985, Handy et a/  1988a, b). 

The conventional EMM theory formulation involves the transformation of the 
time-independent Schrodinger equation eigenvalue problem, HY = EY, into a pure 
moment problem involving the moments of the wavefunction { u ( p ) ] .  An analysis of 
the positivity structure of the waveiunction ieads to an infinite iamiiy of constraints 
on the energy, E, and the moments as symbolized by (for one-space dimension 
problems) 

&,,{E; u l a o  for m =0,1 and n a0 (1.1) 

where the constraints correspond to Hankel-Hadamard (HH) determinants. 
Given a maximum HH-order, N (i.e. n S N ) ,  one must determine all the energy 

parameter values for which the corresponding finite set of H H  constraints admit a 
moment-solution, U,( E). Generally, the admissible set of energy values, F,, will 
define an open interval ( E G ' ,  E',t'). As the order N increases, the endpoints define 
converging lower and upper bounds to the corresponding physical eigenenergy 
value, E,. 

non-existence of U,(E)  may be obtained by either directly solving the nonlinear H H  

constraints or solving an equivalent set of linear moment constraints (made possible 
by an appropriate linearization ofthe H H  constraints). The latter involves the application 
of a linear programming ( L P )  based cutting merhod (Handy er a/ 1988a.b). 
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Regardless of which approach is adopted, from a practical perspective, one must 
always partition an arbitrary energy interval and determine at each partition point 
whether all the HH inequalities, up to order N, are satisfied. Those partition points 
admitting moment solutions are then used to approximate the feasible energy interval, 

Within the conventional multidimensional EMM theoretical formulation, there is 
no proof available that ensures that the feasible set of energy values (as N + m) is 
indeed an interval; although the EMM theory does guarantee that the infimum and 
supremum to F, define converging lower and upper hounds, respectively, to the true 
physical eigenenergy value. In principle, there could be several or many feasible energy 
intervals (to be referred to as feasible energy interval segmentation). In practice, this 
has not been observed (the analysis of the sextic anharmonic oscillator in Handy et 
al (1988a) has programming errors; subsequent investigations showed no feasible 
energy interval segmentation). Numerically, it appears that at each order of the HH 

analysis only one continuous feasible energy interval remains. Indeed, for the one- 
dimensional Schrodinger problem, Ashbaugh and Sundberg (1991) have given a 
rigorous mathematical proof that no ‘feasible energy interval segmentation’ can occur 
for most potentials. 

From an algorithmic standpoint, the preceding issues are clearly important (par- 
ticuiariy for muiiidimensionai probiems) and underscore the necessity ior being carefui 
in selecting an adequately small mesh size for the energy space partition; otherwise, 
it is possible that the existence of several or many feasible energy intervals can go 
undetected and affect the accuracy of the generated bounds. 

In this work we will develop an alternate formulation of the EMM theory which 
has none of the above theoretical/algorithmic limitations. Specifically, we will study 
both finite and infinite dimensional (with regards to the number of moment variables) 
analogues of the generic Euclidean time dependent problem 

(E: ) ,  E‘,+’). 

H’P(x, t )  = J,’P(x, t )  (1.2) 

analysed from a momenf problem (Shohat and Tamarkin 1963) perspective, in order 
to determine the proper initialization (at ‘ t  = 0’) corresponding to a configuration space 
soiution which evoives for aii time as a bounded (finite power momentsj ana positive 
function. 

The immediate outcomes of the Euclidean-time EMM formulation (ET-EMM) to be 
presented are: 

(1) The ET-EMM approach generates energy bounds automatically. 
(2) ’& ET-EKM generated feasible energy values define an open interval. 
(3) The ET-EMM theory will take on a structure (within the moments’ representation) 

analogous to that of Barnsley’s theorem (Barnsley 1978) in configuration space (the 
‘bath-tub’ theorem) which states that for a given Schrodinger Hamiltonian, H, and an 
arbitrary positive wavefunction configuration, @(x), the infimum over x of the ratio 
H@(x)/@(x)  is an immediate lower bound to the ground state energy, E,: 

inf{[HQ(x)]/@(x)} S E, .  ( i . 3 )  

It is well known that this theory has two important shortcomings: (i) it can be 
numerically difficult to locate the infimum; (ii) there is no systematic way of improving 
the lower hounds; that is, one does not know how to update a given @(XI  so as to 
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yield an improved lower bound. In contrast, ET-EMM offers a better theoretical formula- 
tion by which to effectively address these issues. 

Despite all the above, the Euclidean time formulation is not as robust as the time 
independent formulation (EMM). That is, the convergence rates of the eigenenergy 
bounds cited in the tables are rather slow, The temptation is to say that because one 
is working with many more variables or missing momenzs (i.e. a much larger 
dimensioned space) it is reasonable to expect a slower convergence rate. Nevertheless, 
from a theoretical standpoint ET-EMM has much to offer. In particular, as alluded to 
before, it suggests that the general (multidimensional) time-independent E M M  formula- 
tion is more than likely not plagued by feasible energy interval segmentation, as also 
argued (for the one space dimension case) by Ashbaugh and Sundberg (1991). 

Finally, this work is a consequence of applying the basic principles governing the 
use of the general moment method (Handy and Lee 1991). We do not present an 
exhaustive study of the numerical nature of the results. Instead, we are more interested 
in assessing the consistency and consequences of the basic theory itself, as articulated 
in the subsequent discussion. 

2. The Euclidean-time EMM theory 

2.1. Finite dimensional systems 

Although EMM theory can be (and has been) applied to arbitrary excited states (Handy 
and Lee 1991), for simplicity we will limit all of the remaining discussion in this paper 
to the ground state case only. 

Consider the following finite dimensional analogue of equation (1.2) (unless other- 
wise indicated, repeated indices denote implicit summations) 

[ M v - ~ S g ] U j ( t )  =J ,U, ( f )  1 S i, j s  D (2.1) 

where D is the dimension. The significance of the E parameter will be explained shortly. 
We will assume that the matrix M is symmetric and of Sturm-Liouville ( S L )  type. The 

its components non-zero and of uniform signature, which can be taken to be positive. 
Accordingly, the ground state eigenvector will be referred to as a positive vector. This 
property is also shared by all bosonic ground state wavefunctions (Handy and Bessis 
1985). Returning to (2.1). it follows that each 'excited' eigenvector (including any 
superposition of degenerate vectors) must have at least one negative component 
(because of mutual orthogonality with the ground state eigenvector). 

From the Rayleigh-Ritz variational theorem, it can be immediately concluded that 
if a Hermitian matrix has all its off diagonal elements negative (non-zero) then it is 
of S L  type. It is interesting to note that a (symmetric) discretization of the Schrodinger 
Hamiltonian operator results in an SL matrix. 

cofi&tion requires that the ground St& (!owes! eigenv&!e) eigenvector h*vc a!! 

With respect to (2.1) we now ask: 

Is there a unique solution to equation (2.1) which is positive for all time and has 
finite (Stieltjes) power moments for each compound: 
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If the answer is yes, then the basic EMM theory guarantees that converging lower and 
upper bounds to the ground state eigenvalue can be generated (Handy and Lee 1991). 
This is immediately true if the matrix is of SL type and the E parameter lies between 
the ground ( A , )  and first excited ( A 2 )  state eigenvalues: A,  < E < A,. The proof is easy. 
First, as implied by the previous notation, let us denote the eigenvectors of M by i?’, 
where j = 1 corresponds to the ground state. The associated eigenvalues are denoted 
by AI, Mi?’= A,W. 

C R Handy and G L Ndow 

The general solution to (2.1) satisfies 

D 

, = I  
u ( t ) =  ~ ~ i ? ~ e x p ( [ A , - ~ ] t ) .  (2.2) 

As long as A,  < E s A,, then the only bounded solution with finite w,(p) power moments 
is that corresponding to c, = 0, for i 2 2. In addition, this solution is positive for all 
time as long as the trivial factor, c, ,  is positive. Thus in this case, application of the 
EMM philosophy (in a manner to be described below) must result in converging lower 
and upper bounds to the ground state eigenvalue. 

The preceding argument did not require positivity. If we relax the condition 
A,  < E A 2  and allow 

A ,  < A , < .  . . < A x  < E S A*+, (2.3) 

for some arbitrary ‘k‘ value, then one can still show that there is a unique solution 
that is positive and has finite power moments. Consider the sum 

1 c,B’exp([A,-&]t) (2.4) 

for arbitrary cjs. This represents the general solution to (2.1) which is asymptotically 
bounded under condition (2.3), and consequently has finite power moments. 

A simple asymptotic analysis shows that at sufficiently large times, only the slowly 
varying solution corresponding to j = k will dominate; however, unless k = 1 ,  the 
corresponding eigenvector cannot have all its components positive. Accordingly, the 
ground state vector term in (2.4) generates the only bounded and positive solution for 
all time. Thus, as long as E is an upper bound to the ground state eigenvalue, there is no 
additional restriction on it. The same argument should apply to continuous systems. 

Proceeding with the necessary ET-EMM analysis, we can transform (2.:) into a 
multicomponent Stieltjes moment equation upon integrating both sides by I,, d t  1’: 

(2.5) 

From (2.5) one can generate all the w-moments, once the vi’s are specified. Clearly, 

[ M g  - ES~]W~(O) = -U( (2.6) 

[My - E ~ ~ ] W ~ ( P ) =  -pw,( p -1) f o r p a l .  (2.7) 

j = ,  

[ M g  - E S ~ ] W ~ ( P )  = - S ~ , J J ~  -pwi(p - 1). 

The U; expression denotes the I =  0 value of the time dependent ‘solution’ to (2.1). 

this dependence is linear. Specifically: 

One can express the linear dependence of the ws on the us through the relation 
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where the M ( p ;  i, j )  coefficients satisfy the relation 

It is readily apparent that the w-o system is homogeneous. We may then impose 
a convenient normalization: 

D 
u t = ]  

i = ,  

We will constrain U, through the above. Substituting 
D 

v , = l - X  vi 
i = 2  

into (2.8), we obtain 
D 

W , ( P ) =  N ( P ;  i, I ) +  1 N ( p ;  i,j)uj 
j = 2  

where 

(2.10) 

(2.11) 

(2.12) 

Applying the E M M  philosophy, we can ‘quantize’ or determine the ground state 
solution by imposing on the w-moments (and thereby on the u-initialization variables) 
the requirement that they correspond to a positive solution for all time: U( 1 )  > 0, for 
f 30. Note, the fact that we are implicitly working with finite ws automatically restricts 
us to the space of hounded time-dependent configurations with finite power moments, 
as discussed earlier. 

Given the representation in (2.1 l ) ,  we proceed to impose the necessary and suflcient 
constraints for the w-moments to correspond to the moments of a positive function. 
This can be done through the appropriate nonlinear (in the moments) Hankel- 
Hadamard (HH) inequality constraint relations (Handy and Bessis 1985): 

Det{wj(m+n, + n 2 ;  u)}>O for 1 s i <  D m=O, 1 (2.13) 

and 

O s n , , n , s N  where O s  N <co. 

For fixed ‘i’, ‘m’ and ‘ N ’  values, the expression within the brackets corresponds to a 
Hankel matrix of dimension N + 1. We have made explicit the w’s dependence on the 
vector U. Thus, one can regard (2.13) as defining constraints within the positive sector 
of the D-dimensional space v , 0 0 2 0 . .  .OvD. 

Let us denote by V N  the solution set to (2.13) up to order N. It can be shown that 
it must be convex. In the infinite limit N + 00, V, must reduce to a D-dimensional 
point corresponding to the initialization values of the true solution to (2.11, subject to 
the normalization in (2.10), and denoted by 8’. 

2.2. Generuring eigenuaiue bounds 

It is manifestly clear that no explicit reference to an eigenvalue parameter appears 
within the preceding formalism. How then is one then to generate converging eigenvalue 
bounds? 
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The first observation is that the desired u-solution, a', must lie in each of the V,, 
for arbitrary N. This is because it always satisfies the HH constraints at each order N. 

Secondly, if we denote by 4; the ith component of the true solution, then (note: 
no summation over ' i ' )  

[4911a'[ , = I  ,f M , & J ] = A ,  for each i. (2.14) 

Let us define the ratios: 

(2.15) 

It must then follow that for each R,[u], its infimum and supremum values over the 
set V N  must define lower and upper bounds, respectively, to the true ground state 
eigenvalue, A , .  That is: 

inf {Ri[u]}<h,<sup {RJu]} (2.16) 
VN V N  

since R,[4'] = A ,  and 4' lies in V,. 
For future reference, we shall denote each of the extremal values by: 

R I  = inf {Rj[u]} (2.17) 
V N  

(2.18) 

We note several important features of (2.16). First, it (as well as its Schrodinger 
equation counterpart to be discussed) involves the analogous ratios as those appearing 
within Barnsley's theory (refer to equation (1.3)). Second, eigenvalue bounds are 
generated automatically without having to numerically define a partitioning of the 
A - space. 

At first glance one might expect that the manifest nonlinear u-dependence of the 
R;[u] ratios might complicate the determination of the extremal values over the set 
V,. Actually, this is not the case. For given 'i' the Ri[u] function is linearly dependent 
on the variables l /uj  and { u j / u j l j #  i ) .  

The set V ' , - ~ " = { ( v , / u j , u l / u i  ,..., vi , ui+,/ui,.. ., u,/u~)~ueV,] is convex. The 
most immediate proof follows from the linear programming reformulation of the basic 
EMM theory (the cuffing method) which says that V N  (a bounded set, refer to (2.10)) 
can be defined by an infinite set of linear inequalities of the form 

-1 

D 

j = 1  
>: A@,< B, for i = 1,. . . , a, 

Since ui > 0, upon dividing all the linear inequalities by vi there follows the infinite 
family of linear inequalities: 

i - l  0 

j - ,  j-it, 
1 A,vj/ U, - BI/  U; + E AGO;/ U; S -AI;, 

A basic theorem of linear programming theory is that the solution set to any family 
of linear inequalities must be convex (Chvatal 1983). Thus V(,-,'' is convex. The 
importance of this result is that in principle the determination of the extremal values 
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in (2.16) is much simpler than that of Barnsley's theorem. The former simply involves 
the determination of the extremal values of a linear function over a nonlinear convex 
set. Indeed, the extremal values must lie on  the boundary of the set (JVL,')). This 
corresponds in principle to a readily implementable optimization problem with no 
multiminima ambiguities. Barnsley's theory can be plagued by multiminima ambiguities 
depending on the nature of the chosen positive configuration, as discussed in the 
context of (1.3). 

One can proceed to impiement the above optimization program provided the 
boundary set JV',"" can be readily (numerically) identified. This can be difficult because 
of the increasing degree of nonlinearity as  the Hankel matrix dimension, N f l ,  
increases. Nevertheless, one can still implement the above program in the context of 
a linear programming formulation as presented in the following subsection. 

2.3. Linear programming generation of eigenvalue bounds 

Instead of finding the extremal values of R j  one can ask if there exists a subset V , ,  
of V, satisfying the additional constraint R i [ u ]  = r;, for some arbitrary r, value. Since 
R j [ u ]  is a continuous function, only r, values lying within the interval [ R ; ,  R t ]  can 
yield a non-null V,,,; conversely, if r; lies outside this interval, then V , ,  = 0. One can 
now numerically partition an arbitrary subset of the real line and determine if V , ,  
exists or not. Clearly, this process can yield arbitrarily accurate lower and upper bound 
estimates to the values R ;  and R t ,  respectively. Note that although we are again using 
partitioning, as in the time-independent formulation of the EMM theory, the ET-EMM 

formulation guarantees that only one continuous feasible r, interval exists. 
One effective method for determining the existence or non-existence of V , ,  is to 

use the linear programming based cutting method. This will also entail using r; (or 
equivalently R;)  as a parameter. Proceeding with the latter, we must invert the R i - U  
dependence (2.15) and constrain one of the us. Any of the R;[u] functions may be 
considered; however, for the i =  1 case the fact that ul is constrained through (2.10) 
complicates the ensuing analysis. For this reason, we prefer the restriction: i >  1. 

Combining (2.10) and (2.15) we have 

D 

j = 2  
ujRj=Mt,+ 1 [MB-M;,]U~ 

that is, if we assume that i # 0, then 
D 

u;[R; -Mj,+Mit]= Mi, + 1 [M,j-Mj,lU,. 
j = 2 a n d  +! 

(2.20) 

(2.21) 

It is evident from (2.21) that if one solves for U, in terms of the other us and R , ,  
then there is the potential problem of encountering singularities as R, is varied. 

denominator is encountered. We shall eliminate uD : 
A r m r A - n h i  ~t ; E  nr.=ferslhl- tn m l i m i n ~ t e  =nvnne nf the  fither (1 E rinre nn R &n-nrlOnt ,* .., .... ."* ........ "._" ..,-..--. I..__..._. -,"," ...-- .." .., ..-p-..Y'.., 

"--I 

[M, - M m 1  01, = M a  + Z [MI - M ,  I - R A ,  10,. (2.22) 
,=2 
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We will regard Ri as a variable parameter and { u 2 , .  . . , uD-J as the independent 
variables (from the cuffing method perspective). Notice that the preceding analysis has 
assumed that 

2 s i S D - 1 .  (2.23) 

The final step is to incorporate (2.22) into (2.11). First define 
U-l 

j - 2  
uD=n,+ njuj (2.24) 

(2.25) 
2 S j G  D -  1. 

(2.26) 

(2.27) 

Table I.  ET-EMM formulation far the ground-state eigenvalue bounds of a D=3 
dimensional (symmetric storage mode M,, i =  1,. . . , D and j =  1, .. . , i): 3, -11, 0, -4, 
-1, I .  Actual eigenvalues: -10.608 858 623 3, 1.527632 11423, 13.081 225 9197. The 'i' 
refers to the index associated with the chosen R , [ v ]  function ( 2 6  is D- I);  while the N 
refen to the expansion order in (2.28). T h e  E denotes the chosen eigenvalue shift parameter 
(equation (2.3)). 

i N Lower bound Upper bound 

s = -5.0 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

E = -0.1 
2 
2 

e = O . l  
2 
2 
2 

3 
4 
5 
6 
7 
8 
9 

10 

12 
13 
14 

I ,  1 1  

3 
4 

3 
4 
5 

-16.0 

-11.5 
-10.97 
-10.75 
-10.67 
-10.64 
- 10.6 19 

-10.6104 
-10.609 5 
-10.609 I 5  

-12.8 

- I n < > ,  
-,"."I> 

-io.n 
-10.63 

-10.80 
-10.63 
-10.614 

-6.5 

-9.8 
-10.32 
-10.49 
-10.56 
-10.59 
-10.601 

-10,6077 
-10,6084 
-10.608 66 

-8.8 

-lnLn' 
-I".""" 

-10.5 
-10.58 

-10.50 
-10.58 
-10.602 
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Table 2. ET-EMM formulation for the ground-state eigenvalue bounds of a D = 4  
dimensional matrix (symmetric storage mode My, i=  1 , .  . . , D and j =  1.. . . , i ) :  3, -11, 
2, -4, -I, 1, -2, -3, -6 , l .  First three eigenvalues: -11.8904580995, -1.23575724169, 
6.962 316 121 33. The ‘i‘ refers lo the index associated with the chosen R,[v l  function 
( 2 S i S  D -  1); while the N refers to the expansion order in (2.28). The B denotes the 
chosen eigenvalue shift parameter (equation (2.3)). 

N Lower bound Upper bound 

E = -5.0 
2 3 
2 4 
2 5 
2 6 
2 7 
2 8 

E = -0.1 
3 2 
3 3 
3 4 

E = 5.0 
3 2 
3 3 
3 4 

-17.1 -5.1 
-13.61 -10.38 
-12.5 -11.32 
-12.107 -1 1.682 
-11.971 -11.816 
-11.919 -11.864 

-12.0 -11.8 
-12.0 -11.8 
-11.91 -11.87 

-11.91 -11.86 
-11.892 -11.889 
-11.8906 -1  1.890 3 

Utilizing the representation in (2.26) one is ready to use the standard cutting method 
to obtain bounds for the lowest eigenvalue. Specifically, an equivalent linear formula- 
tion of the constraints in (2.13) is provided by the quadratic form-linear (in the 
moments) inequalities (Handy et al 1988a, h): 

w .. 
C C. ,w, (m+n,+n, ;  u)C,,,>O for m=O,  1; N = O ,  1,. . . ,m (2.28) 

.‘,“2=0 

and arbitrary C&. Substituting (2.26) into (2.28) results in the standard linear program- 
ming based cutting method utilized in the basic EMM theory. The results of this analysis 
are summarized in tables 1-3. All the results are consistent with the preceding analysis. 

3. ET-EMM analysis for the Schrodinger equation 

We now extend the preceding formalism to the continuum case corresponding to the 
one-dimensional Schrodinger equation. For pedagogic reasons, we limit this discussion 
to the simple harmonic oscillator case. In  general, the ET-EMM formulation requires 
working with an infinite set of variables (although at any order of the calculation one 
is working with a finite number of these variables); accordingly, the bounds generated 
through ET-EMM are slowly convergent. The real contribution of the ET-EMM theory 
lies in its theoretical structure which is very rich and may suggest more practical 
reformulations. 

Consider the continuum space problem corresponding to the harmonic quantum 
oscillator ( m  =mass): 

-J:Y(x, t )+ {mx*- -E}Y(x ,  ~ ) = J , Y ( x ,  1). (3.1) 
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Table 3. ET-EMM formulation far the ground-state eigenvalue bounds of a D = 5  
dimensional matrix (symmetric storage mode M,, i =  1 , .  . . , D and j =  I , .  . , , i): 3, -11, 
2, -4, -1, 1. -2, -3, -6, 2, -1, -4, -2, -3, 4. First three eigenvalues: -13.292380835 8, 
-1.305 260021 42, 4.390746 12647. The 'is refers to the index associaled with the chosen 
R , [ v ]  function ( 2 s  i 4  D -  1); while the N refers to the expansion order in (2.28). The E 

denotes the chosen eigenvalue shift parameter (equation (2.3)). 

i N Lower bound Upper bound 

E = -5.0 
2 2 
2 3 
2 4 
2 5 
2 6 
2 7 

4 2 
4 3 
4 4 
4 5 
4 6 
4 7 

E = -0.1 
2 2 
2 3 
2 4 

3 3 

4 2 
4 3 
4 4 

c=O.l 
2 2 
2 ~ 

2 4 

3 2 
3 3 
3 4 
3 2 

4 3 

2 

-24.8 
-16.4 
-14.3 
-13.6 
-!3.39 
-13.321 

-14.1 
-13.6 
-13.36 
-13.32 
-13.299 
-13.298 

-14.1 
-13.4 
-13.33 

-13.4 

-13.5 
-13.32 
-13.30 

-14.0 
-!3.4 
-13.31 

-13.7 
-13.34 
-13.30 
-13.5 

-13.32 

-6.9 
-10.7 
-12.4 
-13.0 
-!?.I 
-13.265 

-12.3 
-13.0 
-13.22 
-13.27 
-13.285 
- 13.290 

-12.6 
-13.19 
-13.27 

-13.2 

-13.1 
-13.26 
-13.284 

-12.7 

-13.28 

-13.0 
-13.25 
-13.28 
-13.1 

-13.27 

-111 

Note that a sufficiently small E parameter is introduced in accordance with the 
discussion in section 2. 

For Hamiltonian operators with parity invariant polynomial potentials, one can 
transform (3.1) into a moment problem equivalent involving the two-dimensional 
Stieltjes moments: 
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The Stieltjes moment equation counterpart to ( 3 . 1 )  is 

mu( P + 1 . 4 )  = -&&,U( P) + 4 P, 4 )  - 4 4 P .  q - 1) + 2P(2P - 1) U ( P  - I ,  4 )  (3.3) 
where u(p) is the Stieltjes moment for the initial configuration at f = 0, 

U ( P )  = iomdyy’Wfi,  Wfi. (3.4) 

The moment variables (missing moments) for this problem are { u ( p ) l p > O }  and the 
set {u (O,q ) lq>O} .  Once these are specified, all other moments may be generated 
through (3 .3) .  It is immediate to see that for the finite set of missing moment variables 
{ u ( p ) l O S p s  H- l}and{u(O, q ) [ O s  q s  V} the moments { u ( p ,  q ) lOsq<  V , O s p s H +  
q )  can be generated. The linear dependence of the u ( p ,  q )  moments on the missing 
moments can be represented as follows: 

V H-l 

,=0 ,=0 
u ( P , ~ ) =  1 M , ( ~ , q ; j ) u ( O , j ) +  1 W ( P ,  q ;  M i )  (3.5) 

where q = 0,. . . , V and p = 0,. . . , H + q. The M-coefficients satisfy 

m M , ( ~ + l ,  q ; j )  = € M , ( P ,  q ; j ) - q M , ( p ,  q - 1 ; j ) + 2 ~ ( 2 p - l ) M , ( p - l ,  q ; j )  (3.6) 
i i i ? v f 2 ( p + l , q ; i )  

= :S,OS,, + €MAP,  q ;  i ) - q M 2 ( p ,  q -  1 ;  i )  

+ 2 p ( 2 p - 1 ) M 2 ( p - 1 ,  q ;  i )  (3.7) 

MI@, q ; j )  = S,,, foro< q, j < V  (3.8) 

together with the initialization conditions 

and 

M2(0. q ;  i )  = 0 for 0 s  q < V and Os is H- 1 

It is a well known theorem that the bosonic ground state wavefunction must be of 
uniform signature, which can be taken to be positive (Handy and Bessis 1985). Our 
objcc!iue then 1s to qczntize the &eve system by reqdiring !ha! !he missing mement 
variables be constrained to correspond to a solution that is asymptotically bounded 
(therefore having finite two-dimensional Stieltjes moments in space and time) and 
positive for all time. All of the basic formalism and discussion in the previous section 
applies here too. Accordingly, we will only specify the specific form of the necessary 
relations pertinent to the harmonic oscillator case. 

We will adopt the normalization 
V H-l 

,=0 2 4  
1 u(O, j )+  1 u ( i ) = l .  (3.9) 

Eliminating u(0 ,O)  we can express the linear dependence of the u ( p , q ) s  on the 
unconstrained missing moments as follows: 

V 

,=I 
u ( p ,  q ) = M , ( p ,  q ;  O)+ 1 [ M L P ,  q ; j ) - M , ( ~ ,  4 ;  O) lu(O, j )  

(3.10) 
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As in the finite dimensional case in section 2, we will be working with the functions 
(note that the true ground state energy moment values, B(p) ,  satisfy -2p(2p- I ) B ( p -  
I ) + m B ( p +  1) = E,iY(p), for p ” 0 )  

R,[u] = [-2i(2i- l ) u ( i -  1) +mu( ;+  l)] /u(i) .  (3.11) 

For simplicity, we shall restrict ourselves to the case i = 0, or R,[u] = mu( l)/u(O). 
Treating the latter as a parameter and eliminating u(1) we obtain the final linear 
relation required: 

ntv-l 
U(P, q ) =  E NAP, q;j)xj 

j=0 

where x , = l ,  x,=u(O), ~ ~ , < ~ - , = u ( j ) ,  and ~ ~ ~ ~ ~ ~ + ~ - ~ = u ( O ; j - H + l ) ;  also 

(3.12) 

MI(P, 4;  0) i f j = O  
M,(p,q;O)+(R,lm)M2(p, q; l ) - M , ( ~ , q ; O ) [ ( R , / m ) + l l  i f j =  1 
Mdp, q ; j ) - M , ( p ,  9 ;  0) 
M, ( p. q; j - H + 1) - MI( p.  4; 0) 

if 2 s  j <  H - 1 
if H s j S H + V - l .  

N J j )  = 

Instead of working with the two-dimensional analogues of the Hankel-Hadamard 
determinants, it is more effective to work with the two-dimensional formulation of the 
linear relations in (2.28). The only modifications are that one must define an appropriate 
coordinate pair sequence ordering { ( i ,  j)“In = 1,. . . ,) and there are three sets of 
inequalities: 

N 

for arbitrary Cs and for (m, ,  m 2 )  = ( O , O ) ,  (1 ,  O), and (0, I )  and N = 0 . 1 , .  . . , m. The 
adopted sequence ordering proceeds as follows. Define the set of coordinate pairs (i, j )  
where j = 0,1,. . . , J and i = 0, . . . , I + j ,  for given I  and J .  Let (0,O) be the first coordinate 
sequence element and vary ‘i’ while holding ‘j’ fixed within the prescribed limits; 

given I and J, the total number of sequence elements is &,J= ( ~ I + J + ~ ) ( J +  1)/2. Note 
that for given I  and J ,  the set 

thereby resulting in (0, Oh, (1, OL, (2,01,, . . . , (I,  0 )1+i ,  (0,1)1+2, (1 ,1)1+3, .  . . . For 

l ( m , +  in,+in2, m 2 + j H , + j n 2 N m l ,  m2)  = (O.O).(LO), @,I) ;  and 1 n ,  , n 2 s  4 , J )  (3.14) 

defines all the coordinates for which the moments in (3.2) must be defined. They in 
turn define the number, m,, of constrained missing-moment variables required, which 
will usually be {u( i ) lO<isH=21+1)  and {u(O, j ) (OSj<V=2~+1} .  Of course, the 
normalization constraint, combined with using R, as a parameter (and eliminating 
U( 1)) produces m , - 2  unconstrained missing moments. 

Inserting (3.12) into (3.13) defines the necessary formalism for implementing the 
cutting method. 

On the basis of the preceding formalism we were able to generate the bounds 
quoted in table 4. Note that the convergence rate is slow. Nevertheless, the results are 
consistent with the ET-EMM theory. 



Euclidean time formulation of the E M M  2681 

Table 4. Results for quantum harmonic oscillator problem. The I ,  J and Q,, parameters 
are explained in the context of equation (3.14). Actual ground state energy value form = I 
is E,=' .  

E I .  I ,  4,) Lowerbound Upperbound 

3 2 2 12 0.66 1.25 
IO 2 2 12 0.94 1.21 
10 3 3 22 0.91 I .03 

4. Conclusion 

We have developed a Euclidean time formulation of the basic eigenvalue moment 
method which h ~ s  none of !he thenreticz! znd practicz! !iz-i:a!iona of the !i=e= 
independent EMM formulations (as discussed in the introduction). Because of the large 
number of missing-moment variables, one does not expect a rapid rate of convergence 
for the generated bounds; however, the analysis presented and the supporting numerical 
examples do  confirm the correctness of the ET-EMM formulation. In addition, this work 
is another application of the basic principles identified in the work of Handy and Lee 
(1991) concerning the necessary and sufficient conditions required for the basic EMM 
theory to apply; specifically, that the associated configuration space (Schrodinger) 
equation admits a unique solution which is simultaneously bounded (with finite power 
moments) and positive. 
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